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ABSTRACT: Common methods for the postprocessing of deterministic 2-m temperature (T2m) forecasts over the United

States were evaluated from112- to1120-h lead. Forecast data were extracted from the Global Ensemble Forecast System

(GEFS) v12 reforecast dataset and thinned to a 1/28 grid. Analyzed data from the European Centre/Copernicus reanalysis

(ERA5)were used for training and validation.Data from the 2000–18 periodwere used for training, and 2019 forecasts were

validated. The postprocessing methods compared were the raw forecast guidance, a decaying-average bias correction

(DAV), quantile mapping (QM), a univariate model output statistics (uMOS) algorithm, and a multivariate (mvMOS)

algorithm. The mvMOS algorithm used the raw forecast temperature, the DAV adjustment, and the QM adjustment as

predictors. Forecasts from all the postprocessing methods reduced the root-mean-square error (RMSE) and bias relative to

the raw guidance. QM produced forecasts with slightly higher error than DAV. DAV estimates were the most consistent

from day to day. The uMOS and mvMOS algorithms produced statistically significant lower RMSEs than DAV at forecast

leads longer than 1 day, with mvMOS exhibiting the lowest error. Taylor diagrams showed that the MOS methods reduced

the variability of the forecasts while improving forecast-analyzed correlations. QM and DAV modified the distribution of

forecasts to more closely exhibit those of the analyzed data. A main conclusion is that the judicious statistical combination

of guidance from multiple postprocessing methods is capable of producing forecasts with improved error statistics relative

to any one individual technique. As each method applied here is algorithmically relatively simple, this suggests that

operational deterministic postprocessing combining multiple correction methods could produce improved T2m guidance.

KEYWORDS: Bias; Regression analysis; Statistics; Forecast verification/skill; Numerical weather prediction/forecasting;

Statistical forecasting

1. Introduction

Much of the attention in the recent literature on the statistical

postprocessing of forecasts has shifted to the postprocessing of

ensemble prediction system guidance and the production of

skillful and reliable probabilistic forecasts. This is reflected in a

recent textbook (Vannitsem et al. 2018) highlighting develop-

ments in this discipline. Despite the evolution in this direction,

many weather prediction centers still produce deterministic

forecast guidance from a variety ofmethods, especially forecasts

of more statistically straightforward quantities such as surface

temperature and particularly at shorter forecast lead times

(days, not weeks). Hence, it is still of practical interest to oper-

ational weather prediction centers to understand the potential

strengths and weaknesses of several plausible deterministic

statistical postprocessing methods.

In this article we compare the characteristics of several al-

gorithmically simple methods when applied to the statistical

correction of 2-m above ground surface temperatures (T2m)

from a single forecast system. The algorithms are the decaying-

average (DAV) bias correction (Cui et al. 2012), quantile

mapping (QM; Hopson and Webster 2010; Voisin et al. 2010;

Maraun 2013), and model output statistics (MOS) regression

techniques (Glahn and Lowry 1972; Carter et al. 1989). While

this is not an exhaustive list, these represent different techniques

with different underlying correction principles, and each is

used operationally in different contexts. In fact, in the U.S.

National Weather Service, each of these is used. The DAV

method is used in theNational Blend ofModels (NBM; Craven

et al. 2020). QM is also used in the NBM for precipitation

forecasts (Hamill et al. 2017; Hamill and Scheuerer 2018), and

MOS is still used for station data postprocessing (e.g., Glahn

et al. 2009).

At many prediction centers, improved products may also be

generated through the combination of output from multiple

prediction systems, with the implicit assumption that biases are

quasi-independent and their average reduces error and pro-

vides more realistic estimates of forecast uncertainty. See, for

example, Bougeault et al. (2010), Yamaguchi et al. (2012), and

Liu and Xie (2014). Often the individual prediction systems’

guidance are statistically adjusted as well, as in Vislocky and

Fritsch (1995), Krishnamurti et al. (2000), Raftery et al. (2005),

and Hamill (2012). While multimodel combination and calibra-

tion are valid approaches, the intent of this article is exploration

of statistical adjustments applied to a single prediction system.

Long time series of forecasts and observations/analyses are

ideal for postprocessing. Without them, approximations may

be necessary, such as bolstering the training set with data from

‘‘supplemental locations’’ (Hamill et al. 2017) or pooling of

training data over locations spanning large regions (Lowry and

Glahn 1976). With newly available global reforecasts from

version 12 of the NWS Global Ensemble Forecast System

(Hamill et al. 2021, manuscipt submitted to Mon. Wea. Rev.;

Zhou et al. 2021, manuscript submitted to Wea. Forecasting;

H. Guan et al. 2021, submitted to Mon. Wea. Rev.), there is aCorresponding author: Thomas M. Hamill, tom.hamill@noaa.gov
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long-enough training dataset that such approximations are not

necessary for surface temperature, and each grid point can be

processed using only that point’s data for training, simplifying

the algorithm development. In particular, this study indepen-

dently evaluated the raw and postprocessed forecasts over a set

of grid points 1/48 in size, separated by 1/28, in a domain en-

compassing the contiguous United States (CONUS). The

2000–18 T2m forecast and reanalysis data were used as training

data, and the forecasts were validated during 2019. A full cross

validation again was omitted to minimize computational expense

(calculations were performed on a home desktop computer dur-

ing COVID-19). These multiple postprocessing methods were

evaluated with common (root-mean-square error, bias) metrics

as well as those less commonly applied to weather predictions

such as ‘‘Taylor diagrams’’ (Taylor 2001). The hope is that the

results will guide the choice of algorithms and their possible

combination in future operational weather postprocessing.

Below, section 2 discusses the data used in this study as well

as the postprocessing methods and the methods of evaluation.

Section 3 provides results, and section 4 concludes.

2. Data, postprocessing, and evaluation methods

a. Forecast data

Gridded T2m reforecasts from the U.S. National Weather

ServiceGlobal Ensemble Forecast System, version 12 (GEFSv12)

were used in this study. The ensemble forecast system was

described in Zhou et al. (2021, manuscript submitted to Wea.

Forecasting), the reforecast data were described in H. Guan

et al. (2021, submitted to Mon. Wea. Rev.) and the reanalyses

used to initialize the reforecasts were described in Hamill et al.

(2021, manuscript submitted to Mon. Wea. Rev.). Briefly, v12

of the GEFS provides a major system upgrade; the ensemble

prediction system uses a new finite-volume dynamical core,

there are major improvements to the deterministic and sto-

chastic physics, and the grid spacing has been refined to

;25 km. Ensemble prediction skill is improved in many ways, as

described in Zhou et al. (2021, manuscript submitted to Wea.

Forecasting). The real-time ensemble is accompanied by a

reforecast dataset spanning 2000–19 (which is available for

free download from Amazon web services, https://noaa-gefs-

retrospective.s3.amazonaws.com/index.html). During this pe-

riod, for each day at 0000UTC, a 5-member reforecast ensemble

was generated to116-day lead, one control, and four perturbed

members. Once per week a larger 11-member ensemble was

generated to 135 day, a control, and 10 perturbed members.

For this simple study, we examined only the deterministic

control member from this reforecast ensemble. While data

were available on a 1/48 grid, the data were subsampled to 1/28,
confined to a domain from 1258 to 608W and from 208 to 508N.

These choices were made to reduce the computational expense

and storage requirements. The author has no reason to expect

this subsampling to affect the results because the spatial cor-

relation length scale of surface temperature errors is much

larger than the grid spacing (Hamill and Scheuerer 2020). The

domain encompassed the contiguous United States and in-

cluded some of Mexico, southern Canada, and the Caribbean

(Fig. 1). Only the grid points in this domain that were denoted

with .50% land in both the forecast and analyzed data were

considered; there were some oddities where the forecast and

analyzed data differed in their land–water classifications, and

this profoundly affected the statistics. Forecasts were evalu-

ated from 112- to 1120-h lead time in time steps of 12 h.

Beyond 1120 h, deterministic forecasting is inappropriate.

b. Analysis data

Coincident ‘‘ERA5’’ reanalyses (Hersbach et al. 2020) from

the European Centre for Medium-Range Weather Forecasts

(ECMWF)/Copernicus Climate Service reanalysis were down-

loaded and used for statisticalmodel training and validation. The

data were extracted on a 1/48 grid and subsampled to the 1/28 grid,
coincident in space with the forecast grid to reduce computa-

tional expense and storage. Data were extracted at 12-h intervals

from the beginning of 2000 to the end of January 2020. ERA5

employs a T2m analysis procedure using station observations,

and it was thus deemed to be a reasonably trustworthy gridded

reference product.

c. The decaying-average bias correction

This method will be abbreviated as ‘‘DAV’’ hereafter. The

method has previously been described in Cui et al. (2012). The

approach is quite simple, both algorithmically and in terms

of implementation. The application developer chooses a value

a that determines the weighting to apply to the most recent

discrepancy between forecast and observation (or analysis).

For a forecast date t for a particular forecast lead time and grid

point, the DAV bias estimate is

b̂DAV
t 5 (12a) b̂DAV

t21 1a( f
t
2 a

t
) , (1)

where b̂DAV
t21 is the bias estimate at the same lead time and grid

point but 1 day previous, and ft is the sample forecast value of a

random variable Xf and at is the sample analyzed value at date

t. Some particularly appealing characteristics of DAV are as

follows: (i) training may be conducted on-the-fly; one need not

conduct a separate training, followedby validation. (ii) Because of

this, storage of training data in an operational environment is

not necessary. When considering high-resolution grids over

large areas and spanning multiple forecast variables, multiple

FIG. 1. Grid points (dots) used for the evaluation of postprocessing

methods in this study.

3290 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/01/22 06:54 PM UTC

https://noaa-gefs-retrospective.s3.amazonaws.com/index.html
https://noaa-gefs-retrospective.s3.amazonaws.com/index.html


lead times, and lengthy training periods, this storage can be-

come quite large. Some disadvantages of the DAV method

were discussed in Hamill (2018), in particular the difficulty in

choosing an optimal value of a in the presence of time-varying

unconditional bias.

The error of the DAV method was only slightly sensitive to

the chosen value of a. Fig. 2 shows the RMSE of the DAV

method during the 2000–18 training period as a function of a.

Higher a produced the lowest RMSE for shorter leads, and

smaller a for longer leads. Why? At the shorter leads, random

error from chaotic processes are comparatively small, so fewer

recent samples are sufficient to estimate the bias. Further, the

biases may be related to quickly varying state aspects such as soil

moisture, and thus past discrepancies between analysis and fore-

cast in themore distant past are de-weighted.At longer leads with

their larger random errors, the weighted averaging based on a

longer time series of bias estimates (Cui et al. 2012) producedwith

the smaller a is beneficial. For the validation in 2019 against other

techniques, thea that produced the lowestRMSEat each forecast

lead time during the training period was chosen.

d. Quantile mapping

Let the cumulative distribution function (CDF) for the

forecast at a particular gridpoint location and time be deno-

ted by

F
f
(V)5P(X

f
#V) , (2)

where Xf is again the temperature forecast random variable at

time t, andV is a specific temperature value; 0.0# Ff(Xf) [5 p]#

1.0. The CDFs for a given grid point and month are esti-

mated from a long time series of data, described later. There

is a one-to-one mapping between a forecast value and its cu-

mulative probability. We define a quantile function that maps

a cumulative probability p back to the forecast temperature

variable:

X
f
5F21

f (p) . (3)

The quantile-mapping (QM) procedure thus maps the fore-

cast temperature sample to its cumulative probability in the

climatological distribution of forecasts and then applies the

quantile function (also known as the percent-point function)

for the analyzed distribution:

âQM
t 5F21

a [F
f
( f

t
)] . (4)

In this way QM estimates an analyzed value sharing the

same cumulative probability relative to its analyzed clima-

tological distribution as the sample forecast value to the

climatological forecast distribution. The bias estimate is

then b̂QM
t 5 ft 2 âQM

t .

The CDFs for forecast and analyses at many grid points were

characteristic of non-Gaussian distributions. After some ex-

perimentation, a three-component Gaussian mixture model

was chosen to represent the CDFs instead of a one-component

Gaussian or other parametric distribution. It used the python

module scikit-learn.mixture. This module determined weights,

means, and standard deviations associated with three Gaussian

kernels whose weighted sum provided the closest fit to the

empirical distributions of forecasts (or analyzed) data.

An example of the fitted distributions and probability–

probability (P–P) plots (Wilks 2011, his section 4.5.2) are

provided in Figs. 3 and 4, respectively. At this grid point and

at many others examined, the fitted CDFs appear to produce

accurate parametric representations of the empirical CDFs.

Different distributions were estimated for each grid point,

forecast month, and lead time using 2000–18 data and the

month of interest including the data from 61 month. For

example, 1120-h forecast CDFs for the month of February are

fit with January–March 2000–181120-h training data. SeeWilks

2011 for interpretation of the P–P plots.

e. Univariate MOS

Univariate MOS, or uMOS hereafter, is an application of

simple linear regression to bias correction. This assumes that

an estimate of the analyzed temperature may be determined

through a regression equation of the following form:

âuMOS
t 5 c

0
1 c

1
f
t
, (5)

where c0 and c1 are the fitted intercept and slope. The error (or

residual) et 5 at 2 ât is commonly assumed to be normally

distributed with zeromean. In practice, nonlinear relationships

FIG. 2. Root-mean-square error of the decaying-average bias

correctionmethod as a function ofa for various forecast lead times. The

larger dot denotes the value with the lowest error in the training period.
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and heteroscedasticity were present at many grid points, as

will be discussed in the results, but for generality, no gridpoint

specific remedial measures such as power transformation of

data were employed. Linear regression is reviewed in many

texts, includingWilks (2011, his section 7.2.1). As with theQM,

separate regression equations were fit for each grid point at

each forecast lead time, month by month, using 2000–18

training data and a 3-month period centered on the month of

interest. The implicit bias estimate was thus b̂uMOS
t 5 ft 2 âuMOS

t .

f. Multivariate MOS

Multivariate MOS (mvMOS) using multiple forecast var-

iables as predictors has a long heritage in the U.S. National

Weather Service (Glahn and Lowry 1972; Carter et al. 1989)

and in many other forecast agencies. Commonly, multiple

forecast fields including variables above the surface are used

as additional predictors, variables such as forecast cloud

cover, thicknesses between constant pressure levels, and so

forth. Application of this approach with the data at hand

could be more challenging, for a screening regression ap-

proach to the selection of predictors might result in very

different predictor choices for different parts of the domain,

complicating interpretation. Rather than use this approach

FIG. 4. Probability–probability (P–P) plots corresponding to the

data in Fig. 3.

FIG. 3. Examples of empirical (dashed red, underneath) and

fitted (blue, overtop) CDFs estimated with a three-component

Gaussian mixture, here for January data at 124-h lead time near

Boulder, CO (408N, 1058W): (a) 2-m temperature forecast data and

(b) corresponding analysis data.
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with its training and data management complexity, multi-

variate here implies something slightly different; instead of

multiple forecast variables, the bias corrections from other

approaches are used as predictors. Specifically, we estimate

the analyzed state with a regression equation of the follow-

ing form:

âmvMOS
t 5 c

0
1 c

1
f
t
1 c

2
b̂DAV
t 1 c

3
b̂QM
t . (6)

This allows us to determine whether a method that uses in-

formation from alternative bias-correction approaches may

improve the forecasts. No interaction terms were included. The

implicit bias correction is b̂mvMOS
t 5 ft 2 âmvMOS

t . The training

data periods were the same as with uMOS, but a first sweep

through the data was necessary to generate the DAV and QM

bias estimates, which were then used as predictor data in the

mvMOS regression analysis.

Previously, multimethod synthesis showed promise for prob-

abilistic forecasts (Möller and Groß 2016; Bassetti et al. 2018;

Yang et al. 2017; Baran and Lerch 2018).

g. Verification methods

Commonly used verification methods will be applied, fo-

cusing on error and bias. Root-mean square error (RMSE)

statistics will be provided. For a bias-correction method with n

samples across the grid and nt times, the estimated RMSE for a

given postprocessing method is

R̂MSE5
1

n
t
n2 1

�
nt

t51
�
n

i51

[â
t
(i)2a

t
(i)]2

( )1/2

(7)

and the estimated unconditional mean bias (BIA) is

B̂IA5
1

n
t
n
�
nt

t51
�
n

i51

[â
t
(i)2a

t
(i)]: (8)

Differences of RMSE for the various bias-correction methods

were evaluated relative to the DAVmethod. The 5th and 95th

percentile confidence intervals for these RMSE differences

were generated with the paired block-bootstrap procedure

described in Hamill (1999); 100 resamplings were performed.

Taylor diagramswere also generated as a way of understanding

the forecast characteristics (Taylor 2001; Wilks 2011, their sec-

tion 8.6.3). These diagrams were plotted in polar coordinates. The

radial distance from the origin represented the ratio of the cli-

matological standard deviations of forecast versus analyses. This

was the mean forecast variability divided by the mean analyzed

variability, where variability measured the standard deviation of

the sample. The angle, computed clockwise from the 12 o’clock

position, represented the forecast versus observed correlation.

Gray lines denote lines of equal standardized RMSE. For this

application of Taylor diagrams, a sample will be plotted for each

forecast grid point, so that the potential variability of the error

decomposition across the domain can be examined.

3. Results

Figure 5 provides RMSE and BIA statistics averaged

over all land points within the domain. The DAV method

provided a statistically significant decrease in RMSE relative

to the raw guidance, and this reduction in error amounted to

FIG. 5. Domain-averaged errors of raw forecasts and various bias-correction methods. (a) RMSE of raw (solid red) and DAV (dashed

orange-brown) bias correction methods as a function of forecast lead time. The 5th and 95th percentile confidence interval of differences

between the two forecasts are plotted as light orange-brown around the DAVmethod. (b) RMSE differences of the QM2DAVmethod

(blue; lower is an improvement overDAV), uMOS (green), andmvMOS (gray). Confidence intervals are plotted in lighter-shade colors as

in (a), but here the confidence intervals represent differences with respect to the DAV method. (c) Unconditional bias for raw forecasts

and the various bias correction methods.
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1–3-day gain lead time; for example, the 13-day DAV fore-

casts were nearly as skillful as the 11-day raw forecasts.

Figure 5b shows that QM generally produced forecasts with

slightly higher RMSE than DAV, but the uMOS and mvMOS

forecasts after 11.5 days provided a significant reduction

in RMSE relative to DAV. Overall, the mvMOS forecasts

produced the lowest domain-averaged RMSE, and this was

generally true across seasons (not shown).

Domain-averaged unconditional biases were reduced in all

methods (Fig. 5c), but the DAV method produced forecasts

with the lowest unconditional bias. Apparently, the bias char-

acteristics of 2000–18 training period were dissimilar to those

of 2019, for QM, uMOS, and mvMOS all demonstrated slight

warm biases. Despite their higher bias, both the uMOS and

mvMOS algorithms were designed to minimize squared error

with the training sample provided, which is likely why they

provide slightly lower RMSE in the validation period than

DAV at most leads, despite their larger biases. Alternative

formulations of uMOS and mvMOS were also tested, wherein

the forecast data were changed to be a deviation from a daily

unconditional climatological mean analyzed temperature,

which was estimated with a cubic-spline spline fit (not shown).

These reduced the RMSE of these methods very slightly.

However, to facilitate more direct comparison against the

other methods, only the results using the unmodified forecasts

are presented.

The reduced error of mvMOS is an interesting result, sup-

ported by other literature (Möller and Groß 2016; Yang et al.

2017; Bassetti et al. 2018; Baran and Lerch 2018). Different

postprocessing methods have different strengths. To the extent

that biases were unconditional on the forecast temperature and

can be reasonably estimated with recent samples, then DAV

performs well. The QM method does not attempt to minimize

error but seeks the analyzed value associatedwith today’s quantile

in the forecast distribution, producing samples that should be

draws from the analyzed distribution. Largemappingswill occur if

the cumulative probabilities differ between forecast and analyzed.

The MOS methods by design minimize RMSE, but as will be

discussed later, at the expense of other forecast characteristics.

How responsive were the various statistical adjustment

techniques to day-to-day changes of weather? As an example,

time series of124-h forecast data for a grid point near Boulder,

Colorado, are presented in Fig. 6. The top panel displays a

time series of the 124-h lead GEFSv12 forecast and ERA5

FIG. 6. The124-h forecast and ERA5 analyzed time series of 0000 UTC data for a grid point near Boulder, CO, during 2019. (a) ERA5

analyses (red) and GEFSv12 forecasts (blue). (b) Bias estimates from various methods. One-day lag autocorrelations are provided in the

inset legend.
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analyzed data, as well as the ERA5 climatology, fitted with

cubic splines as in Hamill and Scheuerer (2020). The bottom

panel shows corresponding time series of the various post-

processing methods. The 1-day lag autocorrelation coefficients

are provided in the inset legend. Per its design, the DAV

method changed the least from day to day, with the largest

autocorrelations; it exhibits an inertia. The other methods’

statistical adjustments were more responsive to the weather.

Let us consider more closely the rapid oscillations of the

regression methods during July in Fig. 6b. Figure 7a shows the

CDFs used in the quantile-mapping function at this location.

The CDFs aligned closely with each other, so the mappings

were quite modest, and only modest changes in bias estimates

occurred from day to day during this month; however, in other

months the QM corrections were more sensitive to the forecast

temperature, such as in February. In contrast, the regression

methods produced differing corrections for different forecast

temperatures at this grid point during July. Figure 7b shows the

2000–18 training data for this location as well as the fitted

uMOS regression curve. In this case, the one-size-fits-all re-

gression approach, with no remedial measures to address issues

such as heteroscedasticity, appeared to be a model shortcom-

ing. The training data were in fact heteroscedastic, with larger

differences between forecasts and observations at lower tem-

peratures, suggesting uMOS accuracy could be further im-

proved with remedial measures to alleviate heteroscedasticity.

Further, the marginal distributions showed that the underlying

data were multimodal in nature, with peak probability density

at the higher temperatures; because of the larger number of

samples with higher temperatures, the regression fit was more

closely optimized to these samples. As a consequence, the re-

gression model did not appear to provide a high-quality fit at

the lower temperatures; in this instance when the forecast

temperatures were comparatively low, the regression model

predicted a cold forecast bias. The actual (forecast, analyzed)

samples for July 2019 were presented in Fig. 7b as the bolder

red points, several of which have colder forecast temperatures

and predicted cold biases based on the regression line. With a

daily change in forecast temperature fromwarm to cold, there

was a corresponding change in the estimated forecast bias

from too warm to too cold, and hence large oscillations oc-

curred with the change in forecast temperatures from one day

to the next.

Despite its challenges exhibited in Fig. 7, the uMOS and

mvMOS methods did produce comparatively lower RMSE on

average, but what other forecast characteristics did they have

relative to the other methods? This can be examined in part

with Taylor diagrams (Taylor 2001; Wilks 2011, their sec-

tion 8.6.3). Figure 8 provides such diagrams for the 124-h

forecasts for raw, DAV, QM, and mvMOS methods during

the July–August–September 2019 period (other lead times

and seasons had qualitatively similar results, not shown). See

the references above for more interpretation of these dia-

grams. Differently colored dots denote the magnitude of the

analysis standard deviation, i.e., the red dots denoted loca-

tions with little weather variability during the sample period

while the brown dots were locations with the most weather

variability.

The raw forecasts exhibited much scatter in the Taylor

diagram standard deviation ratio, sometimes with the fore-

cast sample during this season having more variability than

the analyzed data, and sometimes less. These variations in the

standard deviation ratio were muted only somewhat with

theDAVmethod. TheQMmethod, consistent with its goal of

producing mappings that represented draws from the analyzed

FIG. 7. (a) Fitted cumulative distribution functions (CDFs) used

in the quantile-mapping procedure for 124-h lead forecasts at a

grid point near Boulder, CO, during July. (b) Scatterplot of 124-h

analyzed vs forecast analyzed 2000–18 training data for July at

Boulder, CO (small gray dots), and marginal probability density

functions (gray lines along each axis). The uMOS fitted linear re-

gression line is presented in red, and the 2019 (forecast, analyzed)

pairs are shown as the larger red dots.
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climatology, had a narrower range of standard deviation ratios

that were more concentrated around the 1.0 ratio. The practical

effect of this as a forecast procedure is that this method retains

more of the variability in the observations, as it is designed to

do. In contrast, the mvMOS procedure, especially for the fore-

casts at locations with smaller analyzed weather variability, pro-

duced less variability in the corrected forecasts than in the

analyzed, as denoted by the ratio that on average was lower than

1.0. It is possible that a human forecaster, say, seeking to predict

the magnitude of a warm or cold event, might prefer the QM

guidance relative to one of the MOS procedures’ guidance, given

that the former retained more of the synoptic-scale variability.

4. Conclusions

This study provided an intercomparison of statistical post-

processing methods applied to deterministic surface-temperature

forecasts on a 1/28 grid over the CONUS and surrounding land

regions out to15-day lead time. The control member from the

Global Ensemble Forecast System version 12 reforecast data

FIG. 8. Taylor diagrams for July–September and 124-h lead time for (a) raw forecasts, (b) DAV, (c) QM, and (d) mvMOS. A sample

from each land grid point is plotted as a separate dot. The radial magnitude indicates the ratio of the sample forecast standard deviation

during the season divided by the sample analysis standard deviation. Correlation increases clockwise from the 12 o’clock position (0.0) to

the 3 o’clock position (1.0). Gray lines denote lines of equal standardized RMSE. Individual dots are colored by that grid point’s sample

analysis standard deviation sa. The dots’ color legend is provided in the plot center; red dots are samples where the analysis standard

deviation was in the lowest quartile of sorted samples, blue dots are for the second-lowest quartile, pink dots are for the second-highest

quartile, and brown are for the highest quartile.

3296 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/01/22 06:54 PM UTC



were used to provide the forecasts, 2000–18 for training and

2019 for validation. ECMWF reanalyses, specifically ERA5,

were used for training and validation. The four methods that

were considered were the decaying-average bias correction

(DAV), quantile mapping (QM), a univariate model output

statistics (uMOS), otherwise known as linear regression, and a

multivariate MOS (mvMOS) that used the surface-temperature

forecasts as well as bias estimates from DAV and QM as predic-

tors. Except at the earliest leads, the MOS techniques produced

forecastswith the lowest errorwithmvMOSproviding errors lower

than uMOS. Through an examination of Taylor diagrams, it was

revealed that while the mvMOS reduced the error, especially at

locations with low climatological variability across a season, it also

reduced the variability in the postprocessed forecasts relative to the

rawguidance.On theother hand,QMandDAVmethods retained

much of the seasonal variability in the raw forecasts. Which

method a forecaster may prefer could depend on whether they are

optimizing for RMSE (choose a MOS method) or for more real-

istic prediction of the magnitude of unusual events (choose DAV

or QM). The DAV method produced bias corrections that were

more consistent in time, while the QM andMOS techniques were

more sensitive to the weather of the day.

A main conclusion is that because different postprocessing

methods may have differing strengths and weaknesses, the

judicious combination of themmay be able to, in somemetrics,

provide guidance that is improved relative to any one on its

own (this is similar to what has been found with multimodel

ensemble combination). In particular, the mvMOS method

here, which combined DAV, QM, and MOS approaches, pro-

duced guidancewith the lowestRMSE. Since each postprocessing

method is relatively straightforward to implement, an operational

combination of these could be a practical solution that would

provide modestly improved guidance for many customers. This is

qualitatively similar to the reduction in error that many have

previously found in multimodel ensemble combinations.

This study was not comprehensive; it considered only an area

around the United States, and it used a long training dataset and

considered only surface temperature, not other variables of in-

terest such as winds or cloud cover or precipitation. Nonetheless,

the optimistic results, confirmed by other supporting literature,

suggest that the judicious combination of multiple, simple post-

processing methods may provide a practical way to reduce errors.
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